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Abstract. We explore the effect of the self-energy, Im6(k, ω), having a single pole,�(k),
with spectralweightα(k) and quasi-particle lifetime0(k), on the density of states. We obtain
the set of parameters�(k), α(k), and0(k) by means of the moment approach (exact sum rules)
of Nolting. Due to our choice of self-energy, the system is not a Fermi liquid for any value of
the interaction, a result which also holds in the moment approach of Nolting without lifetime
effects. Our self-energy satisfies the Kramers–Kronig relationships since it is analytic in one of
the complex half-planes. By increasing the value of the local interaction,U/W , at half-filling
(ρ = 1/2), there is a transition from a paramagnetic metal to a paramagnetic insulator (a Mott
metal–insulator transition) for values ofU/W of the order ofU/W > 1 (W is the bandwidth)
which is in agreement with numerical results for finite lattices and for an infinite number of
dimensions(D = ∞). These results expose the main weakness of the spherical approximation
of Nolting: a finite gap for any finite value of the interaction, i.e., an insulator for any finite
value ofU/W . Lifetime effects are absolutely indispensable to making our scheme work better
than that based on improving the narrowing band factor,B(k), beyond that obtained from the
spherical approximation of Nolting.

Since the discovery of the high-Tc materials [3], the study of correlations has gained
interest, due to the fact that there is a belief [4] that the normal properties of these
materials could be explained in the framework of the Hubbard model [5, 6], since electron
correlations are strong, i.e., the on-site electron–electron repulsionU is much larger than
the energy associated with the hybridization of atomic orbitals belonging to different
atoms [7]. One strategy, according to Anderson [8], for addressing the problem of
the high-Tc superconductivity is to try to find a theory accounting for the normal-state
properties of the cuprates, and then find an electron mechanism which destabilizes the
normal state towards a superconducting state. The Hubbard Hamiltonian is a kind of
minimum model [9] which takes into account quantum mechanical motion of electrons
in a solid, and non-linear repulsion between electrons. Even though this model is
too simple to describe solids faithfully, in-depth theoretical studies have revealed that
achieving an understanding of its various properties is very difficult, as is the simplest
many-body Hamiltonian that one can write down which cannot be reduced to a single-
particle theory [10]. Its study will prove useful in developing various notions and
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techniques in statistical physics with many degrees of freedom. Besides that in cuprate
superconductors, the Hubbard model may also be applicable to describing the metal–
insulator transition in materials like LaxSr1−xTiO3 and V2−yO3, for which a paramagnetic
metal, an antiferromagnetic insulator, and an antiferromagnetic phase metal can be clearly
discerned in the temperature–pressure phase diagram [11]. The fact that the Hubbard model
exhibits all of these features shows that it is suitable for reproducing experimental data.
Additionally, the study of correlations in the Hubbard model is in itself rewarding, since
it sheds light on as-yet unresolved points concerning the novel materials. For example,
at high temperatures (Tc ∼ 30–130 K) the HTSC cuprates, which are poor conductors,
become superconductors. This feature is very strange, because the Coulomb repulsion is
strong. Furthermore, the behaviour of these materials atT > Tc is even more puzzling
than the superconductivity itself. Contrary to the predictions of the Fermi-liquid theory,
the resistivity atT > Tc and optimum doping is linear in temperature, i.e.,R ≈ T .
This suggests a very strong scattering of elementary excitations. A discussion of the
possible breakdown of Fermi-liquid theory is given in reference [12]. There is also
another approach which consists in studying toy models, i.e., exactly solvable models [13],
in order to get some idea of the one-particle properties of highly correlated electron
systems. More recently, there have been some studies on Hubbard superlattices [14]
carried out in order to monitor the distribution of magnetic order over the different
sites.

In this letter, we will use the moment approach (or sum rules) of Nolting [1] for the
spectral density,A(k, ω). As is well known from the literature [15], one of the drawbacks
of the moment approach in the spherical approximation—whereB(k), the narrowing band
factor, is notk-dependent—is that wealwaysfind a gap in the density of states (DOS). If
the chemical potential happens to be in this gap, then we always have an insulator. It has
been argued that the way to resolve the problem of this unrealistic gap is to find a better
approximation for the narrowing band factor,B(k), a task which has previously proven
to be difficult [15]. In view of that difficulty, we have followed a different path, which
consists in proposing a single-pole structure in the self-energy,6(k, ω).

The model that we study is the Hubbard Hamiltonian

H = ti,jc†iσ cjσ +
U

2
niσ niσ̄ − µc†iσ ciσ (1)

wherec†iσ (ciσ ) are creation (annihilation) electron operators with spinσ . niσ ≡ c
†
iσ ciσ .

U is the local interaction,µ the chemical potential, and we work in the grand canonical
ensemble. We have adopted the Einstein convention for repeated indices, i.e., for theNs
sitesi, the z nearest-neighbour (n.n.) sitesj, and for spin up and down(σ = −σ̄ = ±1).
ti,j = −t for n.n. and zero otherwise.

Let us propose for the self-energy,6(k, ω), the following single-poleansatz:

6(k, ω) = ρU + α(k)

ω −�(k)− i0(k)
α(k), 0(k) ∈ R. (2)

With our choice for6(k, ω), we may introduce some numerical oscillations which are also
present in finite lattices. For example, calculating the momentum distribution functionn(k),
defined by

n(k) ≡
∫ +∞
−∞

A(k, ω) dω

exp(βω)+ 1
(3)

whereβ = (kBT )−1, T is a temperature, andkB is the Boltzmann constant, we find that
there are indeed some numerical oscillations [16]. However, forU/t = 4.0 we find a well
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Figure 1. �0,n versusn for U/t = 4.0 andρ = 0.5. Thek-vector is given byk = π(0, n)/32.
As we work in two dimensions, the bandwidth isW = 8t . Compare with the case form = 0 in
figure 5, later.

behavedn(k) which allows us to define a Fermi surface. ForU/t > 6.0, the oscillations in
n(k) are bigger, which makes it difficult to define a Fermi surface. The spectral function,
A(k, ω), is defined in equation (5).

We stress the fact that in our approach we have set out to generalize that of Nolting
(without lifetime effects). Thus, we are working within the framework in which the two-
pole structure is assumed to be due to a single-pole structure in the self-energy. However,
in the calculation of Sunko and Barisić [17], the authors calculate the self-energy in the one-
loop approximation, without vertex corrections. For the imaginary part of the susceptibility,
they use a phenomenological expression. They find that their self-energy is not a single
pole, especially when0 = 0 (see reference [17] for details). Furthermore, the gap in our
approach is due to correlations in the paramagnetic (PM) phase which, according to the
published literature, happens to occur before the antiferromagnetic (AF) one. We have not
studied this here, but it would be worth pursuing it further in order to allow a comparison
with the correlation gap obtained from the AF fluctuations, like that carried out by Sunko
and Barisíc [17].

Even when our self-energy satisfies the Kramers–Kronig relations [18] (it is analytic in
one of the complex planes), the self-energy does not have to satisfy the Kramers–Kronig
relations [18, 19]. We have not studied the validity of the Luttinger theorem [20], which
has been nicely discussed in reference [21]. However, we argue that the Luttinger theorem
is not going to hold, because we have a non-Fermi-liquid system [16]. We can also argue
that our bold choice of the self-energy (equation (2)) is valid for frequencies that are not
too close to the chemical potential. Theansatzgiven as equation (2) is based on the fact
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Figure 2. α(0, n) versusn for different values ofU/t . The parameters are the same as for
figure 1.

that previous authors [22] have proved that, in the absence of lifetime effects, i.e., for
0(k) ≡ 0, the self-energy has the form given by equation (2). In consequence, equation (2)
is a generalization. In reference [22], we state that ouransatzputs on a firm footing the
predictions made in one of our previous papers [15].

By definition, the one-particle Green function,G(k, ω), is given in terms of6(k, ω) as

G(k, ω) = 1

ω − εk −6(k, ω) (4)

whereεk = −2t (cos(kx)+ cos(ky))− µ+ ρU . Also, we will require the spectral density,
A(k, ω), which is defined as

A(k, ω) = − 1

π
lim
δ→0+

ImG(k, ω + iδ). (5)

Using equations (2)–(5), we arrive at the following expression for the spectral density:

A(k, ω) = −1

π

α(k)0(k)

((ω − εk)(ω −�k)− α(k))2+ 02(k)(ω − εk)2 . (6)

Using the first three sum rules of Nolting [1] for the spectral function of equation (5),
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Figure 3. 0(0, n) versusn for different values ofU/t . The parameters are the same as for
figure 1.

we obtain the following equations:∫ +∞
−∞

A(k, ω) dω = a0(k)∫ +∞
−∞

ωA(k, ω) dω = a1(k)∫ +∞
−∞

ω2A(k, ω) dω = a2(k)

(7)

where theai(k), i = 0, 2, are given in reference [1] (see also reference [15]). We do
not use the fourth moment because we have only threek-dependent unknown parameters
to evaluate. (This is one difference between our approach and that of Nolting, since he
starts with the one-particle spectral function, with the result that four parameters have to
be evaluated.) Then, we assume that, atρ = 1/2, the chemical potentialµ = U/2. This
is correct, as we will see from our results. At this point, we would like to reiterate that
the drawback of previous calculations (including ours) consists in the density of states
which results from the two-poleansatzfor the one-particle Green function, in the spherical
approximation of Nolting [1], always having a gap. This solution (always a gap) is known
in the literature as the Hubbard-I solution [23] which was first criticized many years ago by
Roth [24] among others. We call attention to reference [25], where the authors point out the
fact that thek-dependence has to be included inB(k). However, they study the negative
Hubbard model in the strong-coupling limit, and in this limit we have a well developed
correlation gap, anyway. Oleś and co-workers are advocates of using the two-poleansatz
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Figure 4. The spectral density,A(n, n, ω), versusω for U/t = 4.0.

for the one-particle Green function, without lifetime effects. Here, we are including lifetime
effects as a crucial ingredient in the formulation. Moreover, our results clearly show that
the resolution to the problems inherent in the Hubbard-I solution in the moment approach
does not lie in theB(k)-term.

In figure 1 we present theenergy spectrumof the self-energy for several points in
the Brillouin zone, forU/t = 4. In figure 2 we show thek-dependence ofα(k) for
U/t = 4, 6, 8, 12. In figure 3 we present thek-dependence of0(k) for several points in
the Brillouin zone, forU/t = 4, 6, 8, 12. Figure 4 shows the spectral density,A(k, ω),
versusω along the diagonal of the Brillouin zone forU/t = 4.0. In figure 5 we show the
density of states,N(ω), versusω. N(ω) is defined as

N(ω) = 1

Ns

∑
k

A(k, ω). (8)

In all of the figures, we have worked with a square lattice with the periodicity of
Ns = 32× 32. We conclude that thespectral weight, α(k), and the damping factor,
0(k), do not depend strongly onk, for small values ofU/W . For example, forU/t = 4.0,
0(k)/t ≈ 1.5. However, for larger values ofU/W , α(k) has somek-dependence. In
contrast,0(k) shows a strongerk-dependence for larger values ofU/W . We also note
that α(k)0(k) < 0 if we are to obtain a positive spectral density (see equation (6)), as
is shown in figure 4. We see that the spectral density is always positive, and that it has
two peaks for every value of the momentum. This is a signature of a strongly correlated
system. In contrast, the two-particle spectral function can be negative for certain values
of the frequency, a fact known from the literature [26]. Taking a look at the density of
states,N(ω), versusω, we see that the correlation gap opens up forU/W > 1.0. This is
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Figure 5. N(ω) versusω for U/t = 4, 12. We see the opening of the correlation gap for
U/W > 1.0, signalling the Mott metal–insulator transition.

equivalent to the Hubbard-III-like solution [27]. Due to our choice of self-energy, we do
not have a Fermi liquid [8, 27]. Edwards and Hertz [28] have studied the breakdown of
Fermi-liquid theory in the Hubbard model atT = 0. They have drawn a phase boundary
between a Fermi liquid and a non-Fermi liquid (ρ versusU in the paramagnetic phase).
According to these authors, for small values ofU we have a Fermi-liquid behaviour (a
metallic Fermi liquid), and for larger values ofU we have a non-Fermi-liquid metal. In our
approach we have a non-Fermi-liquid behaviour for any strength of the interaction. In order
to obtain agreement with reference [28], we have to include anω2-behaviour for frequencies
close to the chemical potential in addition to the single-pole structure chosen in the present
work. A transition from a metallic Fermi-liquid behaviour to a metallic non-Fermi-liquid
behaviour has been obtained by Figueira, Anda and Nogueira [29]. We should mention
that the phase diagram of the Hubbard model contains an antiferromagnetic transition [30],
which has not been considered here. In our model, even when−Im[6(k, ω)] 6= 0 at the
Fermi surface, we have a metal for small values ofU/W , since the correlation gap opens
up for U/W > 1.0.

In short, we have postulated a one-poleansatzfor the self-energy (equation (2)) in
the moment approach of Nolting [1]. Our essential new working idea with respect to
the now canonical method of Nolting is that we start from the self-energy while Nolting
proposes using a two-poleansatzfor the one-particle Green function from the outset. In
both approaches, sum rules for the spectral function,A(k, ω), are imposed. As a function
of the interaction, we see a Mott metal–insulator transition (MMIT) from a metal for weak
interaction (no gap at zero frequency) to a well developed gap (an insulator) for large values
of the local interaction [2]. Our formulation is not equivalent to the infinite-dimension
calculation of Georgeset al [31], since we have included thek-dependence of the self-
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Figure 6. �(m, n) versusn for some fixed values ofm. U/t = 4.0, ρ = 0.5, and our mesh is
10× 10. Compare the case form = 0 with figure 1.

energy (we are working in two dimensions). There is a calculation by Figueira, Anda and
Nogueira [29] where the authors have also neglected thek-dependence of6(k, ω). In
particular, the authors of references [29, 31] find a Kondo peak atω = 0. In our case,
with ρ = 1/2, the peak-like structure seen at the chemical potential is most probably due
to the van Hove logarithmic singularity which always goes away with the opening of the
correlation gap. With our precision [32], we cannot reach a conclusion as to whether the
Kondo peak is present or not. Nolting himself [33] has also studied the effect of damping
on magnetism. We leave for the future a comparison with reference [34], where the authors
discuss the use of the moment approach for interpolating6(k, ω) between weak and strong
interaction. We include figure 6 to present�(m,n) versusn for fixed values ofm, for
U/t = 4.0 and a 10× 10 mesh. It is worth looking at the band structure form = 0. This
curve has almost the same structure as the band structure shown in figure 1, for a bigger
mesh(32×32). Thus, we can say that finite-size effects are minimal at least as regards the
band-structure calculations. (See the discussion in reference [32].) Finally, we would like to
say that the non-Fermi-liquid behaviour that we have in our approach (by construction) has
nothing to do with any microscopic mechanism. Our arguments rely on general grounds,
on a self-energyansatzwhich is used in the one-particle Green function on which exact
sum rules (moments) are imposed. Those interested in the physical mechanisms of non-
Fermi-liquid behaviour are encouraged to look at the nice account presented in Anderson’s
book [35]. We also call attention to the work carried out by Kirchhofer [36], who has used
the moment approach of Nolting beyond his spherical approximation, using a mean-field
analysis. He finds that there is a metal–insulator transition for the repulsive Hubbard model
for nearest- and next-nearest-neighbour hopping integrals.
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